八年级数学上册知识点:圆的认识

时间:01-13 编辑:佚名 手机版

【www.chuwe.cn - 出文网】

八年级数学上册知识点:圆的认识


圆的定义:
  圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。
  在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

  相关定义:
  1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。
  2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
  3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。
  4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。
  5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。
  6 由两条半径和一段弧围成的图形叫做扇形。
  7 由弦和它所对的一段弧围成的图形叫做弓形。
  8 顶点在圆心上的角叫做圆心角。
  9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
  10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
  11圆周角等于相同弧所对的圆心角的一半。
  12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。
  圆的集合定义:
  圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。
  圆的字母表示:
  以点O为圆心的圆记作“⊙O”,读作O”。
  圆—⊙ ;
  半径—r或R(在环形圆中外环半径表示的字母);
  弧—⌒ ;
  直径—d ;
  扇形弧长—L ;
  周长—C ;
  面积—S。
  圆的性质:
  (1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
  圆也是中心对称图形,其对称中心是圆心。
  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
  逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
  (2)有关圆周角和圆心角的性质和定理
  ① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
  ②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
  直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
  圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
  即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
  ③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
  (3)有关外接圆和内切圆的性质和定理
  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
  ③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
  ④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
  (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
  (5)弦切角的度数等于它所夹的弧的度数的一半。
  (6)圆内角的度数等于这个角所对的弧的度数之和的一半。
  (7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
  (8)周长相等,圆面积比长方形、正方形、三角形的面积大。
  点、线、圆与圆的位置关系:
  点和圆位置关系
  ①P在圆O外,则 PO>r。
  ②P在圆O上,则 PO=r。
  ③P在圆O内,则 0≤PO<r。
  反过来也是如此。
  直线和圆位置关系
  ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。
  ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d<r。
  ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
  圆和圆位置关系
  ①无公共点,一圆在另一圆之外叫外离,在之内叫内含。
  ②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
  ③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
  设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r;
  内切P=R-r;相交R-r<P<R+r。

 

【更多相关内容】

1、八年级下册数学《菱形》答辩题目及解析

2、八年级数学上13.3等腰三角形13.3.2等边三角形1学案新版新人教版

3、勾股定理的应用导学案

4、一元一次不等式组

5、第2节一定是直角三角形吗导学案

6、八年级数学上册《探索勾股定理》知识点北师大版

7、中位数与众数

8、八年级数学重要复习资料:有理数的混合运算

9、一次函数与一元一次方程导学案

10、初二数学用加减消元法解二元一次方程组(二)导学案

1 2

版权声明:以上文章中选用的图片文字均来源于网络或用户投稿,如果有侵权请立即联系:271714539@qq.com,我们立即删除。

八年级Hot Cates