八年级数学重要知识点整理:全等图形

时间:01-13 编辑:佚名 手机版

【www.chuwe.cn - 出文网】

八年级数学重要知识点整理:全等图形


一,全等三角形
教学目标:1.理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质。
2.在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉。
3.使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体念数学的乐趣,并能够利用性质解决简单的问题。
4.三角形全等的“边边边”的条件.
5.三角形全等的“边角边”的条件.
6.三角形全等的条件:角边角、角角边.
重点难点:1.探索全等三角形的性质
2.三角形全等的表示方法与准确找出全等三角形中的对应元素。
3.寻求三角形全等的条件.
4.灵活运用三角形全等条件证明.
全等三角形的概念:在同一平面内能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形。
对应顶点:当两个三角形完全重合时,互相重合的顶点叫做对应顶点。
对应边:互相重合的边叫做对应边,
对应角:互相重合的角叫做对应角。
1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
3.有公共边的,公共边一定是对应边。
4.有公共角的,角一定是对应角。
5.有对顶角的,对顶角一定是对应角。
全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
判定公理:1.三边对应相等的两个三角形全等(简称SSS或“边边边”),这一条是三角形具有稳定性的原因。
2.两边和它们的夹角对应相等的两个三角形全等(简称SAS或“边角边”)。
3.两角和它们的夹边对应相等的两个三角形全等(简称ASA或“角边角”)。
4.两个角和其中一个角的对边对应相等的两个三角形全等(简称AAS或“角角边”)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(简称HL或“斜边,直角边”)。
SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理。
注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),因为这两种情况都不能唯一确定三角形的形状。
另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等。
找对应元素的常用方法有三种:
(一)从运动角度看
1.平移法:沿某一方向推移使两三角形重合来找对应元素.
2.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
3.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
(三)根据经验来判断
1. 大边对应大边,大角对应大角
2. 公共边是对应边,公共角是对应角
做题技巧:一般来说考试中线段和角相等需要证明全等。因此我们可以来采取逆思维的方式。
1.想要证全等,则需要什么条件
2.要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。
3.然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。
4.有时还需要画辅助线帮助解题。常用的辅助线有:倍长中线,截长补短等。

一、三角形全等的条件
首先我们看只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?只给定一条边时(如图中的实线
)
由图可知:这三个三角形不全等.只给定一个角时夹角(如图中的实线).
由画图可知:这三个三角形也不全等.因此,只给出一个条件时,不能保证所画出的三角形一定全等.
接下来我们探索:给出两个条件时,所画的三角形一定全等吗?(1)三角形的一个内角为30°,一条边为3厘米(如图)

这三个三角形不全等.(2)三角形的两个内角分别为30°和50°(如图).它们看起来的形状一样,但大小不一样.
这两个三角形不能重合,所以也不全等.(3)三角形的两条边分别为4cm、6cm(如图).
它们也不全等.我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那么给出三个条件时,又怎样呢?如果给出三个条件画三角形,有四种可能.即:三条边,三个角,两边一角和两角一边.下面我们来逐一探索.
1.已知三角形的三个内角 如果已知一个三角形的三个内角分别为40°、60°、80°.能画出这个三角形,但有的能完全重合,有的不重合,所以它们不一定重合(如图).
通过比较得知:给出三角形的三个内角,得到的三角形不一定全等.
2.已知三角形的三条边 如果已知一个三角形的三条边分别是4cm,5cm和7cm.画出这个三角形如图.
比较可知:这样的所有三角形都是全等的.由此可知:已知三角形的三边,则画出的所有三角形都全等. 这样就得到了三角形全等的条件:三边对应相等的两个三角形全等.简写为:“边边边”或“SSS”.
如下图.
这是用符号语言来表示该三角形全等的条件.
注意:三边对应相等是前提条件,三角形全等是结论.3.已知三角形的“两角一边”
如果“两角一边”条件中的边是两角所夹的边.
如:三角形的两个内角分别是60°和80°,它们所夹的边为2cm,我们来画出这个三角形(如图).
经过比较,它们全等.也就是说已知一个三角形的两个内角及其夹边,那么由此得到的三角形都是全等的. 由此我们得到了判定三角形全等的另一条件:两角和它们的夹边对应相等的两个三角形全等.
简写为:“角边角”或“ASA”.如图,在△ABC和△DEF中.
在“两角一边”中,除“两角及其夹边”外,还有两角及一角的对边.
如果“两角及一边”条件中的边是其中一角的对边,如:三角形的两个角分别为60°和45°,一边长为3cm(如图).
已知两角及一角的对边画三角形时,不容易画,但如果把“两角及一角的对边”转化为“两角及其夹边”时,就可以了.因为三角形的内角和为180°,已知两个内角,那么第三个内角就可求出,这样就把“两角及一角的对边”转化为“两角及其夹边”.
(1)如果60°角所对的边为3cm时,画出的图形如下:
经比较:这样得到的三角形都全等.(2)如果45°角所对的边为3cm时,画出的图形如下.
经比较:这样条件的所有三角形都全等.由此我们又得到了判定三角形全等的另一条件:两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”. 如图.在△ABC和△DEF中.
4.已知三角形的两边及一角
如果已知一个三角形的两边及一角,有两种情况:两边及这两边的夹角,两边及一边的对角.
先看第一种情况下,两个三角形是否全等.
如果“两边及一角”条件中的角是两边的夹角.如:三角形的两条边分别为2.5cm、3.5cm.它们的夹角为40°(如图).
经过比较,如果已知三角形的两边及其夹角,那么所得的三角形都全等.
由此我们得到了三角形全等的条件:
两边和它们的夹角对应相等的两个三角形全等.
简称“边角边”或“SAS”.
如图,在△ABC和△DEF中.
接下来我们研究第二种情况.
如果“两边及一角”条件中的角是其中一边的对角.如:两条边分别为2.5cm、3.5cm.长度为2.5cm
的边所对的角为
40°(如图).
按上述条件画的三角形不唯一,存在不同的三角形满足上述条件,如图.
由图可知:这两个三角形不全等.
所以,两边及其中一边的对角对应相等,两个三角形不一定全等.因此可知:“两边及一角”中的两种情况中只有一种能判定三角形全等.即:两边及其夹角对应相等的两个三角形全等.
二、三角形的稳定性
如果我们取三根长度适当的木条,用钉子钉成一个三角形的框架,所得到的框架的形状固定吗?用四根木条钉成的框架的形状固定吗?
图(1)是用三根木条钉成的三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构,它就坚固和稳定.
图(2)的形状是可以改变的,它不具有稳定性.
那么要使图(2)的框架不能活动,在相对的顶点上钉一根木条,使它变为两个三角形框架即可.
在生活中经常会看到采用三角形的结构去建筑.就是用到了它的稳定性.
小结:
通过上表可以看出,两个三角形全等至少要有三个条件对应相等;我们常用主要是“SSS”、“ASA”、“AAS”、“SAS”.

 

【更多相关内容】

1、八年级数学上册《勾股定理的逆定理》学案

2、八年级数学下《3.4简单的图案设计》导学案(新版北师大版)

3、2018年(华师版)八年级数学下册一次函数的性质名师导学案

4、初二数学下册第18章勾股定理期末复习教案

5、平行四边形的判定(1)导学案

6、八年级数学上册知识点:分式方程的应用冀教版

7、八年级数学重要知识点整理:角平分线的定义

8、初二上册数学轴对称学案

9、初二上册数学知识点总结:轴对称

10、人教版八年级上册数学第一章知识点

1 2

版权声明:以上文章中选用的图片文字均来源于网络或用户投稿,如果有侵权请立即联系:271714539@qq.com,我们立即删除。

八年级Hot Cates