椭圆的定义

时间:01-13 编辑:佚名 手机版

【www.chuwe.cn - 出文网】

椭圆的定义(第1课时)教案

教学目标:1、掌握椭圆的定义,椭圆标准方程的两种形式及其推导过程。

2、通过椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高运用坐标法解决几何问题的能力。

3、培养学生用数学的眼光观察生活,探索科学的思维习惯,培养学生的观察能力和探索能力。

教学重点:椭圆定义及椭圆标准方程的两种形式。

教学难点:椭圆标准方程的建立和推导。

教学过程:

情景设置:

教师:我们这节课讲的是椭圆及其标准方程,哪位同学能说出几个椭圆在实际生活及自然界的例子?

教师:我们要学会观察生活,而且要学会用我们的知识去分析和研究我们观察到的东西。

探索研究:

教师:椭圆在生活中这么普遍,那么哪位同学会画椭圆吗?(找学生回答)

教师演示椭圆的画法。

教师:哪位同学能用数学语言定义一下椭圆(找学生回答)

教师强调以下几点:

① 平面内 ②两个定点 ③常数大于两定点间距离

教师:我们现在知道什么是椭圆了,可是我们数学要研究一个曲线这还远远不够吧?首先要求出这个曲线的方程,然后通过方程研究曲线的性质。

教师:那么椭圆的方程怎么求呢?求曲线方程方法和步骤有哪些?

(同学回答,教师小结)

a2

x2

b2

y2

+

= 1 (a>b>0)

教师引导学生回答,由教师主笔完成焦点在x轴上的椭圆标准方程的推导。推导完成后,继续引导学生探索焦点在y轴上的椭圆的标准方程。

焦点在x轴上的椭圆标准方程是:

y2

a2

+

x2

b2

=1 (a>b>0)

焦点在y轴上的椭圆标准方程是:

教师:在椭圆的标准方程形式上有何特点?方程中有几个参数呢?它们之间有什么关系?

(由学生回答,教师小结)

“三个参数,两个关系”

“三个参数,a、b、c

两个关系, 等量关系:a2 - c2=b2

不等关系:a>b>0, a>c>0.

教师引导学生共同完成以下练习

16

x2

-9

y2

+

= 1

3、

5

x2

3

y2

+

= 2

1、

练习一、以下哪几个方程表示的是椭圆的标准方程

16

x2

16

y2

+

= 1

4、

2、2x2 + 4y2= 1

练习二

如果方程x2 + ky2= 2 是焦点在y轴上的椭圆的标准方程,那么实数k的取值范围是

例1、求适合下列条件的椭圆的标准方程:

两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和等于10。

教师和同学一块儿完成解答。

教师引导,由学生自己总结一节课收获

教师小结:⑴ 注意观察生活,多思考,多分析,多研究

⑵ 知识 ① 椭圆的画法

② 椭圆的标准过程推导

③ 待定系数法求椭圆的标准方程

探索性问题: 当参数a、c变化时,将会对椭圆有什么样的影响?参数b有什么实际意义吗?

 

【更多相关内容】

1、高二数学 数学归纳法学案练习题

2、高二数学下册《分层抽样》知识点复习

3、正弦定理(一)

4、选择结构

5、1.5.2二项式系数的性质

6、高中数学必修四1.2.1任意角的三角函数(第一课时)导学案

7、导数在研究函数中的应用导学案及练习题

8、超越不等式

9、圆的极坐标方程学案

10、周期现象与周期函数

1 2

版权声明:以上文章中选用的图片文字均来源于网络或用户投稿,如果有侵权请立即联系:271714539@qq.com,我们立即删除。

高二Hot Cates