七年级数学下册《相交直线所成的角》学案1

时间:01-13 编辑:佚名 手机版

【www.chuwe.cn - 出文网】

七年级数学下册《相交直线所成的角》学案1

4.1.2 相交直线所成的角(1)
教学目标:
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.
教学重点、难点:
对顶角相等的性质及应用.
教学过程:
一、问题情境
1.在同一平面内的两条直线有几种位置关系?
2.经过直线外一点怎样画出这条直线的平行线?
3.如果两条直线都与第三条直线平行,那么这两条直线    
即:如果b∥a,c∥a,那么b   c.
二、新课学习
1.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .
2.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P75内容,探讨两条相交线所成的角有哪些?各有什么特征?
3.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
例如:(1)∠AOC和∠BOC有一条公共边OC,它们的另一边互为 ,称这两个角互为 .用量角器量一量这两个角的度数,会发现它们的数量关系是
(2)∠AOC和∠BOD (有或没有)公共边,但∠AOC的两边分别是∠BOD两边的 ,称这两个角互为 .用量角器量一量这两个角的度数,会发现它们的数量关系是 .
4.根据观察和度量完成下表:
两直线相交所形成的角分类位置关系数量关系

5.用语言概括邻补角、对顶角概念.
的两个角叫邻补角.
的两个角叫对顶角.
6.探究对顶角性质.
在图1中,∠AOC的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等.
注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?
7.例题示范:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
提示:未知角与已知角有什么关系?通过什么途径去求
这些未知角的度数?,规范地写出求解过程.


三、实效训练:
1.如图所示,∠1和∠2是对顶角的图形有( )

A.1个 B.2个 C.3个 D.4个
2.如右图,三条直线AB,CD,EF相交于一点O, ∠AOD的对顶角是_____,
∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,
∠COB=_______,∠AOE+∠DOB+∠COF=_____.


3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°,求∠EOB的度数.

四、小结与反思:
本节课你有哪些收获?你还有哪些疑惑?
五、课后作业
课本P78 4,5.

 

【更多相关内容】

1、七年级数学下册《利用三角形全等测距离》教案

2、截一个几何体

3、人教版七年级数学上册全册导学案

4、七年级上册《“幻方”中的游戏》 教学设计苏教版

5、幂的乘方与积的乘方学案

6、第十二章 轴对称

7、整式 集体备课教案

8、2017七年级下册数学第三单元知识点汇总(浙教版)

9、七年级数学下册《平均数》教材分析湘教版

10、1.2《点、线、面、体》教案

1 2

版权声明:以上文章中选用的图片文字均来源于网络或用户投稿,如果有侵权请立即联系:271714539@qq.com,我们立即删除。

七年级Hot Cates