《二次函数与一元二次方程的联系》知识点整理

时间:01-13 编辑:佚名 手机版

【www.chuwe.cn - 出文网】

《二次函数与一元二次方程的联系》知识点整理

 
 特别地,二次函数(以下称函数)y=ax^2+bx+c,
  当y=0时,二次函数为关于x的一元二次方程(以下称方程),
  即ax^2+bx+c=0
  此时,函数图像与x轴有无交点即方程有无实数根。
  函数与x轴交点的横坐标即为方程的根。
  1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
  解析式
  y=ax^2;
  y=ax^2+K
  y=a(x-h)^2;
  y=a(x-h)^2+k
  y=ax^2+bx+c
  顶点坐标
  (0,0)
  (0,K)
  (h,0)
  (h,k)
  (-b/2a,4ac-b^2/4a)
  对 称 轴
  x=0
  x=0
  x=h
  x=h
  x=-b/2a
  当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,
  当h<0时,则向左平行移动|h|个单位得到.
  当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
  当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;
  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)?+k的图象;
  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)?+k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。
  因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a).
  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
  (1)图象与y轴一定相交,交点坐标为(0,c);
  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
  (a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
  当△=0.图象与x轴只有一个交点;
  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
  6.用待定系数法求二次函数的解析式
  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
  y=ax^2+bx+c(a≠0).
  (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

 

【更多相关内容】

1、直线平行的条件

2、再探实际问题与二元一次议程组

3、多姿多彩的图形

4、七年级下册《相交与平行》教案

5、平面图形与立体图形

6、用计算器进行数的简单运算

7、认识三角形(1)(总第6课时)教案

8、七年级数学上册《有理数的减法》复习资料浙教版

9、列方程解应用问题

10、北京课改版七年级上2.7有理数的乘法教案

1 2

版权声明:以上文章中选用的图片文字均来源于网络或用户投稿,如果有侵权请立即联系:271714539@qq.com,我们立即删除。

七年级Hot Cates