七年级下册《数据分析小结与复习》学案2

时间:01-13 编辑:佚名 手机版

【www.chuwe.cn - 出文网】

七年级下册《数据分析小结与复习》学案2

数据分析小结与复习(2)
教学目标
1.进一步描述平均数,中位数,众数的差别,初步感受它们在不同情境中的应用;概述刻画数据波动的统计量:方差.
2.进一步通过小组活动,培养团队精神.通过解决身边的实际问题,进一步认识数学与人类生活的密切联系及对人类历史发展的作用.
教学重点、难点
1.重点:平均数、中位数、众数、方差的应用.
2.难点:灵活运用本章知识.
教学过程
一、自主学习
阅读课本第155页对本章知识作进一步回顾.


二、巩固练习
1.如果样本方差 ,那么这个样本平均数为 .样本容量为 .
2.已知 的平均数 10,方差 3,则 的平均数为 ,方差为 .

3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分5060708090100110120
人数2361415541
分别求出这些学生成绩的众数、中位数和平均数.

4. 某养鱼户搞池塘养鱼已三年,头一年放养鲢鱼苗20000尾,其成活率约为70%,在秋季捕捞时,捞出10尾鱼,称得每尾鱼的重量如下:(单位:千克)0.8,0.9,1.2,1.3,0.8,0.9,1.1,1.0,1.2,0.8.
(1)根据样本平均数估计这塘鱼的总产量是多少千克?
(2)如果把这塘鲢鱼全部卖掉,其市场售价为每千克4元,那么能收人多少元?除去当年的投资成本16000元,第一年纯收入多少元?
解:(1)样本平均数

即每条鲢鱼约重1千克.因此可 以估计这塘鲢鱼共重
(2)4×14000=56000(元)56000-16000=40000(元)
所以把鲢鱼全卖掉可收入56000元,除去当年的投资成本纯收入40000元。
选取样本容量的原则:
用样本估计总体时,样本容量越大,样本对总体的估计越精确,相应的搜集、整理。计算数据的工作量也越大,因此,在实际工作时,样本容量的确既要考虑问题本身的需要,又要考虑实现的可能性和所付出的代价。
三、当堂检测
1.一组数据: , ,0, ,1的平均数是0,则 = .方差 .
2.样本方差的作用是( )
A.估计总体的平均水平 ; B.表示样本的平均水平;
C.表示总体的波动大小; D.表示样本的波动大小,从而估计总体的波动大小.
3.如果给定数组中每一个数都减去同一非零常数,则数据的( )
A、平均数改变,方差不变 B、平均数改变,方差改变
C、平均数不变,方差不变 D、平均数不变,方差改变
4.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7,8,6,8,6,5,9,10,7,4 乙:9,5,7,8,7,6,8,6,7,7
经过计算,两人射击环数的平均数相同,但S S ,所以确定 去参加比赛.

5.某公司的33名职工的月工资(以元为单位)如下:
职员董事长副董事长董事总经理经理管理员职员
人数11215320
工资5500500035003000250020001500
(1)求该公司职员月工资的平均数、中位数、众数?
(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

四、本节小结
1.这节课我们学到了什么知识?
2.我们感受到了什么?
3.还存在什么疑惑?
五、课后作业
课本第156-158页习题第4、7、8、9、10题.


 

【更多相关内容】

1、2015年秋七年级数学上册全册教学案汇总(北师大版53份)

2、实际问题与二元一次方程组

3、幂的乘方与积的乘方(1)(总第12课时)教案

4、2017年七年级数学上册第二章整式的加减导学案(人教版)

5、2014年七年级下册数学全册教案(湘教版)

6、近似数和有效数字

7、5.2单项式的乘法教学案

8、有理数的乘方

9、二元一次方程组及其解法1导学案(沪科版)

10、垂直与平行》教学设计

1 2

版权声明:以上文章中选用的图片文字均来源于网络或用户投稿,如果有侵权请立即联系:271714539@qq.com,我们立即删除。

七年级Hot Cates